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Introduction

In the preceding lecture, we learned that, over repeated
samples, the sample mean M based on n independent
observations from a population with mean µ and variance
σ2 has a distribution that, under fairly general conditions,
can be assumed to have a normal distribution with a mean
of µ and a standard deviation (called the “standard error
of the mean”) equal to σ/

√
n.

We saw that we can view the standard error of the mean as
a kind of “noise factor” in estimation process. Increasing n
may cost us more money and/or effort in the short run, but
it also increases the long run accuracy of the estimation
process (and probably the short run accuracy as well,
although that can never be guaranteed).
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Introduction

Now we want to take a big step forward and see how this
result leads to the procedures that we use to test our
theoretical hypotheses with data.
The first thing we need to realize is that hypothesis testing
is a special case of decision-making under uncertainty.
We are going to gather data that we hope will give us an
accurate picture of the world.
We are going to use those data to make a decision.
We know in advance that the decision might be wrong.
What are the things that can happen?
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Dichotomous Decision-Making Under Uncertainty

The classic approach to hypothesis testing requires us to
decide which of two possible decisions is the correct one.
There are plenty of “real world” decisions where one must
make a choice between two courses of action, or two states
of the world, on the basis of information in the presence of
uncertainty.
Can you give me some examples?
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Dichotomous Decision-Making Under Uncertainty

Invest in stocks vs. Invest in bonds
You are pregnant vs. You are not pregnant
Build the reservoir at location A vs. Build the reservoir at
location B
Operate on the tumor vs. Use chemotherapy, watch, and
wait
Buy Chrysler stock vs. Sell Chrysler stock
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Dichotomous Decision-Making Under Uncertainty

These situations share a common framework:
1 There are two possible states of the world
2 You are not sure which is the true state
3 You make a decision in favor of one state or the other

In such a situation, one of two things can happen.
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

Suppose there is a new disease called hyperkeluria (HPK).
This disease has been discovered recently, and
unfortunately is often fatal. Early diagnosis and treatment
can cure the disease, however.
Testing for the disease is extremely difficult. So far, only
one test has been produced. It involves centrifuging part of
a blood sample, and placing a drop of the resulting solution
into a special reagent. This reagent is initially clear, but
changes to a pink or red color when the person tested is
infected with HPK.
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

Unfortunately, the indicator is imperfect. It doesn’t always
yield the same color.
For people who do not have HPK, there is a range of colors
produced. This range extends from perfectly clear to
moderately pink for most individuals.
Similarly, there is a range of colors produced for people
who are infected with HPK. Their test solution colors tend
to range from moderately pink to very red.
Unfortunately, these indicator distributions have ranges
that overlap.
Here is a picture of the situation. The blue distribution, for
the non-infected people, has a mean of −2 and the red
distribution for infected people has a mean of 2. Both
distributions have a standard deviation of 1.
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

Going into the diagnostic process, you know that you have
to “draw the line” somewhere.
You will see a color. You will not know for certain what
that color means.
Where you “draw the line” has implications.
In our diagram, the line has been drawn at the color value
of 0, corresponding to a moderate level of pink.
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There are 4 possibilities, summarized in the table below:

James H. Steiger Hypothesis Testing



Introduction
Dichotomous Decision-Making Under Uncertainty

Statistical Hypothesis Testing
The Z-Statistic

One-Tailed Hypothesis Tests
A Flow Chart for the 1-Sample Test

Statistical Power
A Simplified Approach to Power Calculation

Dichotomous Decision-Making Under Uncertainty
An Example – HPK

Let’s try to estimate the probability of a False Negative.
A False Negative occurs when a person has HPK, but
obtains a test result in the “Negative” region, on the left
side of the decision point. For convenience, I’m going to
shade in this area in.
But you know how to calculate this probability, don’t you!
?
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

> pnorm(0,2,1)

[1] 0.02275013

> nc(2,1)

> cn(-4,0,2,1,x=-1)

> abline(v=0)

x

−2 −1 0 1 2 3 4 5 6

0.0228
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

Suppose that we decided to change our decision criterion to
eliminate almost all False Negatives, because the cost to an
individual of a False Negative diagnosis is much higher
than the cost of a False Positive.
This would involve moving our decision point to the left,
from 0 to −1.
Below is a picture of the changed decision rule, with the
area representing the probability of a False Positive shaded
in.
Note that, although there are two distributions drawn on
the graph, only one can be “true.”
We need to consider the two distributions alternately, not
at the same time, even though it is common to draw both
of them on the same graph.
It is essential that you realize this point!
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> nc(-2,1)

> cn(-1,4,-2,1)

> abline(v=-1)

x

−6 −5 −4 −3 −2 −1 0 1 2

0.1587
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Dichotomous Decision-Making Under Uncertainty
An Example – HPK

What have we learned so far?

In a dichotomous decision process under uncertainty, based
on a single imperfect indicator with a fixed decision point,
there are 4 possible things that can happen, and two of
them represent errors.
There is a trade-off between False Positives and False
Negatives.

1 Sliding the decision point to the left to eliminate False
Negatives increases the probability of a False Positive.

2 Sliding the decision point to the right increases False
Negatives while reducing False Positives.
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Statistical Hypothesis Testing

Statistical hypothesis testing is much like medical testing.
In its most common variant, it is designed to produce a
dichotomous decision under uncertainty.
In this case, the uncertainty again comes from natural
variability.
But in this case, the variability comes from the ”luck of the
draw,” i.e., sampling variability.
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Statistical Hypothesis Testing
The Basic Setup

Let’s suppose (this is a highly artificial example) that we
wanted to test whether the average IQ score of a
population of students known to have received a certain
kind of post-natal vitamin regimen differs from the known
average of µ = 100 in the general population.
It is possible that the group of students has an average IQ
lower than the average, and it is also possible that the
group of students has an IQ that is above the average.
We will assume furthermore that if the special vitamin
regimen has any effect (positive or negative), this effect is
additive, in the sense that it simply displaces IQ scores by
a constant, rather than multiplying them by a constant.
The result of this assumption is that, regardless of the
effect of the vitamin regimen, the population standard
deviation of IQ scores in the treated group is assumed to
be 15, the same as in the general population.
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We take a random sample of n = 25 students from this
special group, and compute the sample mean M .
What do we know about the behavior of the sample mean
over repeated samples?
Suppose the post-natal treatment had no effect. Then the
mean of the sample means would remain at µ = 100.
The standard error of the mean is

σM =
σ

n
=

15√
25

= 3

So the sample mean would have a distribution like the
picture in the next slide.
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x
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We see that, just like with the medical testing situation,
the information we get from our indicator M is imperfect.
Regardless of what the value of µ is, the sample mean M
will, in the long run, include “noise” mixed in with the
signal. As we can see from the plot, most of the time the
sample mean M will be within about 6 points of µ, but a
fair percentage of the time it will be off by at least 3 points.
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Statistical Hypothesis Testing
The Null and Alternative Hypotheses

Suppose we had to decide between two possible states of
the world.

1 H0, the statistical null hypothesis, states that µ = 100. That
is, there is no difference between our special group and the
general population.

2 H1, the alternative hypothesis, states that µ 6= 100.

These two hypotheses are mutually exclusive and
exhaustive. One has to be true, and both cannot be true.
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Statistical Hypothesis Testing
Reject-Support Testing

In most research in education and psychology, the
statistical null hypothesis is the opposite of what the
experimenter actually wishes to show.
Rejecting the null hypothesis actually supports the
experimenter’s belief.
Consequently, the approach is sometimes called
“Reject-Support” testing.
In Reject-Support testing, a Type-I error is a false positive
for the experimenter’s belief, while a Type-II error is a false
negative with respect to the experimenter’s belief.
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Statistical Hypothesis Testing
Accept-Support Testing

Occasionally, researcher’s want to “accept the null” in
order to support their belief system.
Some researchers have attempted to employ the standard
statistical setup in order to “prove the null.”
Such Accept-Support testing turns the standard
conventions around, and in general works very poorly. If
you want to demonstrate that something has no effect, you
need special methods to do it, and these methods are not
discussed in your text.
For now, you are well advised to avoid Accept-Support
testing. In particular, if someone asserts that two groups
are equal because they “did not find a significant
difference,” you should be very skeptical.
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Suppose that, just as in the medical testing example, we
“draw the line,” that is, produce a completely objective
rule for deciding, on the basis of the value of M that we get
from our sample of n = 25, whether to favor H0 or H1.
Let’s assume we have such a rule.
Before we ever discuss what that rule is, or how we might
derive it, we can say that several possibilities exist.
They are summarized in the table on the next slide.
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We begin with an informal definition of our decision rule.
The null hypothesis specifies that µ = 100
We will observe a sample mean M .
If M is sufficiently different from 100, we will reject the
null hypothesis.
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But how far is far enough?
Suppose we chose a point 5.88 units away from 100 in
either direction (i.e., less than 94.12 or greater than 105.88.
(Don’t worry yet about how I came up with the 5.88).
If M is farther away from 100 than either of these two
points, then we reject H0.
What would be the probability of a Type I Error?

James H. Steiger Hypothesis Testing



Introduction
Dichotomous Decision-Making Under Uncertainty

Statistical Hypothesis Testing
The Z-Statistic

One-Tailed Hypothesis Tests
A Flow Chart for the 1-Sample Test

Statistical Power
A Simplified Approach to Power Calculation

Statistical Hypothesis Testing
Drawing the line — Decision Regions

Remember, a Type I Error can only occur if the null
hypothesis is true.
If the null hypothesis is true, σ = 15, and n = 25, the
sample mean M has a normal distribution with a mean of
100 and a standard deviation of 3.
So our question becomes a normal curve problem.
On the next slide, I diagram the normal curve, the rejection
regions, with the Type I error probability shown in red.
The rejection regions are often referred to as “critical
regions” and the rejection points as “critical values.”
When there are two rejection regions at either end of the
distribution, the test is called “two-sided” or “two-tailed.”
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We can see that the total probability of a Type I Error is,
in this case, 0.05.
Here is the R calculation.

> area.below <- pnorm(94.12,100,3)

> area.above <- 1 - pnorm(105.88,100,3)

> Type.I.Error.Rate <- area.below + area.above

> round(Type.I.Error.Rate,5)

[1] 0.05
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That probability, 0.05, is one of the standard values used in
psychological research.
But where did I come up with critical values of 94.12 and
105.88?
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I obviously didn’t snatch the critical values out of thin air.
They were chosen so that I would have an α of 0.05, the
the probability of a rejection split symmetrically into 0.025
in each of the two tails.
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I worked backwards from the fact that for the two-tailed
test to have a total α of 0.05 and be “balanced,” it needs to
have an area of 0.025 in each tail.
Look at the upper tail first.
To have an area above the critical value of 0.025, the area
under the curve below the critical value must be 0.025, so
the critical value must have a percentile value of 97.5.

> qnorm(0.975,100,3)

[1] 105.8799
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Similarly, the lower critical value must be at

> qnorm(0.025,100,3)

[1] 94.12011
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Suppose you wanted the α to be 0.01, rather than 0.05.
With everything else remaining the same, what would you
have to push your critical values out to in order to reduce
the total α to be 0.01.
Hint: What probability would have to be in each tail of the
sampling distribution?
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The Z-Statistic
Why We Need It

With modern software like R, “drawing the line” in terms
of a critical value of M , the sample mean, is easier than it
used to be.
But it still usually wastes time, because each time you
entertain a different sample size, or address a new
situation, you need to compute a new critical value.
For example, in the situation in which the null hypothesis
is thT µ = 100, σ = 15, but now n = 100, what would be
the new critical values for an alpha of 0.05?
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The Z-Statistic
Why We Need It

First, we realize that the standard error of the mean, σM ,
has changed. It was 3, but now it is

σM =
σ√
n

=
15√
100

= 1.5

We quadrupled n so we halved σM and doubled our
precision.
So we can make our rejection points (critical values) half as
far away from 100 as they were.
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> qnorm(.975,100,1.5)

[1] 102.9399

> qnorm(.025,100,1.5)

[1] 97.06005
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The Z-Statistic
Why We Need It

Wouldn’t it be easier if you could have the same rejection
point every time you ran this test with α = 0.05,
two-tailed?
People realized a long time ago that you could make the
process simpler.
Why? Because although the raw score rejection point for
M changes, the Z − Score value stays the same.
For example, we worked two problems in which alpha was
0.05, two-tailed.
In one case, the rejection point was 105.88 in a normal
distribution with a mean of 100 and a standard deviation
of 3. That’s a Z score of ??
In the other case, the rejection point was 102.94 in a
normal distribution with a mean of 100 and a standard
deviation of 1.5. That’s a Z score of ??.
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The Z-Statistic
Why We Need It

In both cases, the Z-score value was 1.96. In the early days
of statistics, people realize that if they used the test
statistic

Z =
M − µ0
σM

=
M − µ0
σ/
√
n

(1)

then they would only have to memorize a few “magic
numbers” from the normal curve. (Note: I use the notation
µ0 to stand for the null-hypothesized value of µ.)
For a two-sided test, the magic numbers are 1.96 for
α = 0.05, and 2.576 for α = 0.01.
So rather than compute critical values (rejection points) for
M , and see if M is in the critical region, one computes a Z
statistic and sees if the Z statistic exceeds one of the magic
numbers in either the positive or negative direction.
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The Z-Statistic
How it Works

Let’s go back to our first example. When σ = 15, n = 25,
and the null hypothesis was that µ = 100, we examine M
and reject the null hypothesis if it is less than 94.12 or
greater than 105.88.
With the Z-statistic approach, we compute the Z statistic

Z =
M − µ0
σM

=
M − µ0
σ/
√
n

(2)

and reject the null hypothesis if Z is less than −1.96 or
greater than 1.96.
The two rejection rules are equivalent — it is easy to verify
that the Z statistic just reaches 1.96 when M barely
reaches 105.88, and the Z statistic just reaches −1.96 when
M equals 94.12.
The Z statistic rejection point, unlike the rejection point
for M , remains the same if you change the sample size.
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One-Tailed Hypothesis Tests

So far, we’ve been talking about situations in which an M
either substantially higher than µ0 or an M substantially
lower than µ0 would be reason to reject H0.
In some situations, a researcher has enough information
about the situation to make the hypothesis directional.
For example, suppose you are trying to show that a
vitamin treatment works, by elevating µ above 100. Your
null hypothesis in the Reject-Support framework is that
µ ≤ 100.
In this case, only an M greater than 100 could provide a
reason to reject the null hypothesis.
So, to control α, we put our rejection point at the upper
1− α quantile of the sampling distribution.
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Example (One-Tailed Test)

We wish to test the null hypothesis that µ ≤ 100, with σ = 15
and n = 25, with α = 0.05. There is only one rejection point, in
the upper tail of the sampling distribution. The rejection point
for M is at the 0.95 quantile of the sampling distribution, which
is

> qnorm(0.95,100,3)

[1] 104.9346
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Example (One-Tailed Test (continued))

Here is a plot of the critical value and the rejection region:

x

88 91 94 97 100 103 106 109 112

0.05
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A Flow Chart

In this course, we will be dealing with situations in which the
null hypothesis and alternative hypothesis form mutually
exclusive and exhaustive opposites. In such a case, we can
construct a simple decision tree for deciding (1) whether our
1-sample Z test is 1-tailed or 2-tailed, and (2) how to set up the
critical value(s).

Is the null hypothesis µ = µ0?
If Yes, then

1 The test is two-tailed. Evidence that µ is either larger or
smaller than µ0 is reason to reject the null hypothesis.

2 The upper rejection point is at the 1− α/2 quantile. The
lower rejection point is at the α/2 quantile.

If No, then
1 The test is 1-tailed.
2 If the null hypothesis is that µ ≤ µ0, then only evidence

that µ is above µ0 on the number line can be cause for
rejection. The critical value is in the upper tail, and is at
the 1− α quantile.

3 If the null hypothesis is that µ ≥ µ0, then only evidence
that µ is below µ0 on the number line can be cause for
rejection. The critical value is in the lower tail, and is at
the α quantile.
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Statistical Power

Power is the probability of getting a result in the rejection
region when the null hypothesis is, in fact, false.
In general, the null hypothesis can be wrong in infinitely
many ways, and to different degrees.
For example, It can be “barely false,” or “overwhelmingly
false.”
In general, all other things being equal, the more false the
null hypothesis is, the larger the power is.
Computing power requires you to specify a degree of falsity
of the null hypothesis.
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Statistical Power

For example, recall our test that µ = 100, with σ = 15 and
n = 25.
We set up rejection points at 94.12 and 105.88 in order to
control α at 0.05.
What would the power be if the null hypothesis is false the
vitamin regimen does have an effect, and the true µ is
µ = 105?
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Statistical Power

We draw the true distribution of M on a map of the
rejection regions, and compute the probability.
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Statistical Power

> nc(105,3)

> abline(v=105.88)

> abline(v=94.12)

> cn(105.88,117,105,3,,x=108,color="red")

x

93 96 99 102 105 108 111 114 117

0.3846
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Statistical Power

What would power be if µ = 107?

> nc(107,3)

> abline(v=105.88)

> abline(v=94.12)

> cn(105.88,119,107,3,,x=108,color="red")

x

95 98 101 104 107 110 113 116 119

0.6455
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Statistical Power

What would power be if µ = 107, but α were set to 0.01?

> nc(107,3)

> abline(v=100+2.576*3)

> cn(100+2.576*3,119,107,3,,x=110,color="red")

x

95 98 101 104 107 110 113 116 119

0.4041
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Statistical Power

What would power be if µ = 105, α were set to 0.05, but we
had a one-tailed test? Notice in the graph below that the
critical value has moved to the left, because with a one-tailed
test, it is at the 0.95 quantile, rather than the 0.975 quantlile.
The old two-tailed critical value is also marked in bold on the
plot below, so you can see how much power was gained by
shifting to the one-tailed test.

> nc(105,3)

> cn(100+1.645*3,119,105,3,,x=108,color="red")

> abline(v=100+1.645*3)

> abline(v=105.88,lwd=3)

x

93 96 99 102 105 108 111 114 117

0.5086
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Statistical Power and Standardized Effect Size

There is a simpler, more direct way to compute power for
the 1-Sample Z test than the approach we took in the
preceding section. It requires just a single equation, plus
the introduction of a new concept
We will not derive the equation, rather I’ll simply present
the equation and demonstrate its use on the same problems
we worked by the standard method.

James H. Steiger Hypothesis Testing



Introduction
Dichotomous Decision-Making Under Uncertainty

Statistical Hypothesis Testing
The Z-Statistic

One-Tailed Hypothesis Tests
A Flow Chart for the 1-Sample Test

Statistical Power
A Simplified Approach to Power Calculation

Statistical Power and Standardized Effect Size
Standardized Effect Size

We saw in the preceding power calculations that an
important factor influencing power is Effect Size, defined as
the the amount by which the null hypothesis is wrong.

Effect Size = µ− µ0 (3)

As µ moves past µ0, and effect size increases, the
distribution of M moves into the rejection region and
power increases.
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Statistical Power and Standardized Effect Size
Standardized Effect Size

The standardized effect size Es converts the Effect Size into
standardized units by dividing by σ, i.e.,

Es =
µ− µ0
σ

(4)

Standardized effect size is also known as Cohen’s d. It is
the amount by which the null hypothesis is wrong in
standard deviation units.
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Statistical Power and Standardized Effect Size
Standardized Effect Size

The standardized effect size Es converts the Effect Size into
standardized units by dividing by σ, i.e.,

Es =
µ− µ0
σ

(5)

Standardized effect size is also known as Cohen’s d. It is
the amount by which the null hypothesis is wrong in
standard deviation units.
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Statistical Power and Standardized Effect Size
Standardized Effect Size

The standardized effect size has a very significant
advantage over the unstandardized effect size — it is, in an
important sense, metric-free.
If you linearly rescale (change inches into centimeters, for
example), the standardized effect size remains the same.
Because the effect is standardized, it is possible to suggest
general standards for evaluating it.
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Statistical Power and Standardized Effect Size
Standardized Effect Size

Cohen proposed the following standards for effect size:
1 Small Effect — 0.20
2 Medium Effect — 0.50
3 Large Effect — 0.80
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Statistical Power and Standardized Effect Size
Calculating Power

Let T be the number of tails (either 1 or 2).
Assume for simplicity that if the test is 1-tailed, the critical
value of the Z statistic is positive, and that the effect is in
the direction for rejection. (There is not much point
computing power for a 1-tailed test if the effect is in the
wrong direction.)
Es = d = (µ− µ0)/σ is the standardized effect size, n the
sample size
Φ() is the normal distribution cumulative probability
function (pnorm in R), and Φ−1() the normal curve
quantile function (qnorm in R).
Then power is calculated as

Power = Φ
(√
nEs − Zcrit

)
(6)

Zcrit is the critical value for the Z-test, and is calculated as

Zcrit = Φ−1 (1− α/T ) (7)
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To employ the equations, calculate the critical value first.
For a given α and number of tails (T), it will not change.
Suppose you are doing a two-tailed test that µ = 100 with
α = 0.05. The critical value is

> alpha <- 0.05

> T <- 2

> Z.crit <- qnorm(1 - alpha/T)

> Z.crit

[1] 1.959964
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Next, calculate the standardized effect size.
In some cases, you will be given µ0, and σ, and will use
them to calculate Es, for some hypothetical value of µ.
For example, if µ0 = 100, σ = 15, what is power if the true
µ is 107 and n = 25?
The standardized effect size is Es = (107− 100)/15 = 7/15.
The full calculation is shown below.

> Es = (107-100)/15

> Es

[1] 0.4666667

> n<-25

> Power <- pnorm(sqrt(n)*Es - Z.crit)

> Power

[1] 0.6455632
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Power of 0.646 is generally not considered to be adequate.
In most applications, power of 0.80 is considered minimal
and 0.90 a reasonable target.
From the calculation on the previous slide, it is clear that
increases in sample size will increase power, since the
square root of n is multiplied by Es in the formula.
But how large an n do we need?
With a bit of manipulation, you can produce a formula to
calculate the sample size that will produce a given level of
power for a given standardized effect size, α, and testing
situation.
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Required n can be calculated as

n =

(
Φ−1(1− α/T ) + Φ−1(Power)

Es

)2

(8)

=

(
Zcrit + Φ−1(Power)

Es

)2

(9)

=

(
Zcrit + Zpower

Es

)2

(10)

This formula is much simpler than it appears at first
glance. The numerator is the square of the sum of two
normal curve values.
One is the critical value for the Z-test (1.96 in this case),
the other the value corresponding to power. In this case,
the 0.90 quantile of the normal curve corresponding to
power is 1.282.

James H. Steiger Hypothesis Testing



Introduction
Dichotomous Decision-Making Under Uncertainty

Statistical Hypothesis Testing
The Z-Statistic

One-Tailed Hypothesis Tests
A Flow Chart for the 1-Sample Test

Statistical Power
A Simplified Approach to Power Calculation

Statistical Power and Standardized Effect Size
Calculating Required Sample Size

The numerator is 1.96 + 1.28 = 3.24, so the required n will
be the square of the ratio of 3.24/Es. For example, if
Es = 7/15, required n is

> Power <- 0.90

> Z.power <- qnorm(Power)

> n <- ((Z.crit + Z.power) /(7/15))^2

> n

[1] 48.24837

Should we use 48.24 as our sample size? Or should we use
49? (It won’t make too much difference, but there is a
convention in use, and we discuss it in the following slides.)
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What will the required n be if the standardized effect size
is “small” according to Cohen’s standards?
Since the small effect is 0.20 = 1/5, dividing 3.24 by the
effect size of 1/5 is the same as multiply it by 5. so the
required n should be the square of 16.2 or about 263.
More precisely

> Z.power <- qnorm(0.90)

> ((Z.crit + Z.power) / (0.2))^2

[1] 262.6856
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Since sample size 0f 262.7 is required to get power of 0.90,
an n of 262 will yield power of slightly less than 0.90. Since
n must be an integer, we “bump” the value up to n = 263
to guarantee power greater than 0.90. This act of moving a
number n with a decimal fraction to the smallest integer
that is greater than or equal to n is called the ceiling
function, and is part of R.

> E.s <- 0.5

> ceiling( ((Z.crit + Z.power) /E.s )^2 )

[1] 43
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To summarize:
1 Compute two normal curve values, one, Zcrit, corresponding

to (the absolute value of) the critical value for the Z-test,
the other, Zpower corresponding to the desired level of
power.

2 Add the two values together.
3 Divide by the standardized effect size.
4 Square the result.

Let’s do an example, and then let’s try another, graphical
approach to get the same answer.
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Suppose the standardized effect size you are anticipating in
your experiment is a “medium effect” of Es = 0.50, and
you decide to run a 2-sided hypothesis test with α = 0.01.
How big a sample size n will you need to guarantee power
of at least 0.95?
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The normal curve value corresponding to an alpha of 0.01
is at the 1− α/2 = 0.995 quantile. This is one of our
“magic numbers” (2.576) from the normal curve.

> Z.crit <- qnorm(.995)

The normal curve corresponding to desired power is

> Z.power <- qnorm(0.95)
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Adding these two and squaring, we get

> Z.crit + Z.power

[1] 4.220683

To calculate the required n, we divide this value by the
standardized effect size, then square the result.

> E.s <- 0.5

> ceiling( ((Z.crit + Z.power)/Es)^2 )

[1] 82
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Most hypothesis tests use one of just a few “magic
numbers” from the normal curve.
Most hypothetical sample size calculations use one of a few
common “target values” of power, specifically, 0.80, 0.90,
0.95, and a few “target values” of Es, like 0.20, 0.50, 0.80.
The Zpower values corresponding to power of 0.80, 0.90,
and 0.95 are, respectively, 0.842, 1.282, and 1.645.
With a little bit of practice, you can get very fast at
computing the required n for the 1-Sample Z-statistic, even
without using R.
With R, it is a snap. In my experience, students (and
profs) tend to make the most errors by

1 Mixing up the 1-tailed Zcrit values with the 2-tailed values.
2 Forgetting to square the quotient as a final step, thereby

ending up with an n of 8 instead of, say, 64.
3 Miscalculating Es in problems where you are given µ, µ0,

and σ and are required to calculate Es as a first step.

So, be careful!
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Example (Test Yourself – Sample Size Estimation)

Suppose you wish to test a 1-Sided Hypothesis with α = 0.05.
What sample size would you need to detect a standardized
effect size of Es = 0.4 with power of 0.80?
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Example (Test Yourself – Sample Size Estimation)

Suppose you wish to test a 1-Sided Hypothesis with α = 0.05.
What sample size would you need to detect a standardized
effect size of Es = 0.40 with power of 0.80?

Answer. We need two values from the normal curve,
Zcrit = Φ−1(1− α) (the one-tailed critical value for the
Z-statistic) and Zpower = Φ−1(Power), the normal curve
quantile corresponding to the desired power. These values are

> Z.crit <- qnorm(1-.05)

> Z.crit

[1] 1.644854

> Z.power <- qnorm(0.80)

> Z.power

[1] 0.8416212

(continued on next slide . . . )
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Example (Test Yourself – Sample Size Estimation (ctd))

Answer(continued). Using the values from the preceding slide,
required n is then calculated as

n = ceiling

((
(Zcrit + Zpower)

Es

)2
)

= ceiling

((
(1.6449 + 0.8416)

0.4

)2
)

= ceiling

((
2.4865

0.40

)2
)

= ceiling(38.64)

= 39
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